Insights into the catalytic properties of bamboo vacuolar invertase through mutational analysis of active site residues.

نویسندگان

  • Tai-Hung Chen
  • Yu-Chiao Huang
  • Chii-Shen Yang
  • Chien-Chih Yang
  • Ai-Yu Wang
  • Hsien-Yi Sung
چکیده

Plant acid invertases, which are either associated with the cell wall or present in vacuoles, belong to family 32 of glycoside hydrolases (GH32). Homology modeling of bamboo vacuolar invertase Bobetafruct3 using Arabidopsis cell-wall invertase AtcwINV1 as a template showed that its overall structure is similar to GH32 enzymes, and that the three highly conserved motifs, NDPNG, RDP and EC, are located in the active site. This study also used site-directed mutagenesis to examine the roles of the conserved amino acid residues in these three motifs, which include Asp135, Arg259, Asp260, Glu316 and Cys317, and a conserved Trp residue (Trp159) that resides between the NDPNG and RDP motifs. The mutants W159F, W159L, E316Q and C317A retained acid invertase activity, but no invertase activity was observed for the mutant E316A or mutants with changes at Asp135, Arg259, or Asp260. The apparent K(m) values of the four mutants with invertase activity were all higher than that of the wild-type enzyme. The mutants W159L and E316Q exhibited lower k(cat) values than the wild-type enzyme, but an increase in the k(cat) value was observed for the mutants W159F and C317A. The results of this study demonstrate that these residues have individual functions in catalyzing sucrose hydrolysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1.

Structural studies of phospholipase C delta1 (PLCdelta1) in complexes with the inositol-lipid headgroup and calcium identified residues within the catalytic domain that could be involved in substrate recognition, calcium binding, and catalysis. In addition, the structure of the PLCdelta1 catalytic domain revealed a cluster of hydrophobic residues at the rim of the active site opening (hydrophob...

متن کامل

Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding.

Schwanniomyces occidentalis invertase is an extracellular enzyme that hydrolyzes sucrose and releases beta-fructose from various oligosaccharides and essential storage fructan polymers such as inulin. We report here the three-dimensional structure of Sw. occidentalis invertase at 2.9 A resolution and its complex with fructose at 1.9 A resolution. The monomer presents a bimodular arrangement com...

متن کامل

Investigating Dynamic Properties of Residues of Warfarin-Azapropazone Binding Site in Human Serum Albumin

Introduction: Human Serum Albumin (HSA) is one of the most important proteins in blood that can bind a wide range of components and different drugs such as Warfarin and is also circulated in the body by HSA. Therefore, studying HSA is very significant in pharmacology. In this research, dynamic behavior of residues of Warfain binding site of HSA has been investigated. Methods: Firstly, PDB form...

متن کامل

Investigating Dynamic Properties of Residues of Warfarin-Azapropazone Binding Site in Human Serum Albumin

Introduction: Human Serum Albumin (HSA) is one of the most important proteins in blood that can bind a wide range of components and different drugs such as Warfarin and is also circulated in the body by HSA. Therefore, studying HSA is very significant in pharmacology. In this research, dynamic behavior of residues of Warfain binding site of HSA has been investigated. Methods: Firstly, PDB form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Phytochemistry

دوره 70 1  شماره 

صفحات  -

تاریخ انتشار 2009